The Exercises From Day 3

Wednesday, May 25, 2016

- 1. Let $H = k[t]/(t^{p^n})$ be monogenic, and let $D_*(H) = Ex$ for some x. We have seen that $F^n x = 0$ and $Vx = fF^r x$ for some $f \in k[F]$ with nonzero constant term. Show that r > 0. (bf Hint. It suffices to show that M/FM is not a Dieudonné module if r = 0.)
- 2. As explicitly as possible (which may not be very explicit), write out $\Delta(t)$ for:
 - (a) $M = E/E(F^n, V)$.
 - (b) $M = E/E(F^n, fF^r V), \ 1 \le r < n.$
- 3. Show that if k contains $\mathbb{F}_{p^{p^2}}$ then

$$E/E(F^3, F^2 - F - V) = E/E(F^3, F - V).$$

4. Show that if $k = \mathbb{F}_{p^2}$ then

$$E/E(F^3, F^2 - F - V) \neq E/E(F^3, F - V).$$

- 5. Suppose r = n. Show that $M \cong M'$ if and only if r' = n' = n, where $M = E/E(F^n, fF^r V)$ and $M' := E/E(F^{n'}, f'F^{r'} V)$.
- 6. Suppose r < n. Show that if $M \cong M'$ then n = n' and r = r', where $M = E/E(F^n, fF^r V)$ and $M' := E/E(F^{n'}, f'F^{r'} V)$.
- 7. Pick r > 0, and suppose $k \subseteq \mathbb{F}_{p^{r+1}}$. For n > r partition the set $\{E/E(F^n, fF^r V) : f \in (k[F]/(F^n))^{\times}\}$ into isomorphism classes.
- 8. Count the number of monogenic local-local \mathbb{F}_p -Hopf algebras of rank p^n .
- 9. Suppose k is algebraically closed. For fixed n, r partition the set $\{E/E(F^n, fF^r V) : f \in (k[F]/(F^n))^{\times}\}$ into isomorphism classes.
- 10. Continuing with k algebraically closed, count the number of monogenic local-local k-Hopf algebras of rank p^n .

The next four problems refer to the following theorem: Let $M = E/E(F^n, F^r - V)$, $M' = E/E(F^{n'}, F^{r'} - V)$. Then every extension of M by M' is of the form $M_{g,h}$, where $M_{g,h}$ is generated by two elements x, y such that

$$F^n x = gy, \ (F^r - V)x = hy, \ F^{n'} y = 0, \ (F^{r'} - V)y = 0.$$

- 11. Use these relations above to show that $M_{g,h}$ is killed by a power of F and V (and hence is a Dieudonné module).
- 12. Let H be the k-Hopf algebra such that $D_*(H) = M_{g,h}$. Show that H is monogenic if and only if $g \in k[F]$ with nonzero constant term.
- 13. More generally, suppose $g \in F^v f[F] \setminus F^{v+1}k[F]$. Show that $H \cong k[t_1, t_2]/(t_1^{p^{n+n'-v}}, t_2^{p^v})$.
- 14. Suppose n = r, n' = r', $g = F^i$, $h = F^j$, $n' \le i < n$, j < n'. Give both the algebra and the coalgebra structure on the bigenic Hopf algebra.
- 15. Write out all Hopf algebras of height one and rank p^4 . Be an explicit as you can, including both the algebra and coalgebra structure.
- 16. Determine the number of height one Hopf algebras of rank p^6 .